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The ground state and its structure for a rotating, harmonically trapped N-Boson system with a
weak repulsive contact interaction are studied as the angular momentum L increases up to 3N .
We show that the ground state is generally a fragmented condensate due to angular momentum
conservation. In response to an (arbitrarily weak) asymmetric perturbation of the trap, however,
the fragmented ground state can be transformed into a single condensate state. We manifest this
intrinsic instability by calculating the conditional probability distributions, which show patterns
analogous to the boson density distributions predicted by mean-field theory.
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Following the experimental realization of a dilute
atomic Bose-Einstein condensate (BEC), the formation
and properties of vortices in an atomic BEC have caused
considerable interest both experimentally [1] and theo-
retically [2–9] in the past few years. Although the re-
cent demonstrations of vortex states by several different
groups are in the Thomas-Fermi limit of strong inter-
atomic interaction, a great deal of attention have also
been attached to the nonvanishing angular momentum
states of weakly interacting N -Boson systems in har-
monic traps. In Ref. [3], Wilkin et al. considered the
case of an attractive interaction and showed that the
ground state is uncondensed and is an example of the
”fragmented” condensate discussed by Nozière and Saint
James [10]. Mottelson [4], Bertsch and Papenbrock [5]
considered the lowest energy quantum states of a repul-
sively interacting Bose gas when L 6 N . Wilkin et al.
have employed a composite boson/fermion picture to de-
scribe configurations beyond the one-vortex state [6]. A
more tractable mean-field calculation performed by Butts
and Rokhsar revealed a succession of transitions between
stable vortex patterns of differing symmetries in the high
angular momentum regime [7]. The connection between
the mean-field theory (MFT) and exact diagonalization
scheme has been studied by Jackson et al. for a special
case of L = 2N [8]. Finally, some analytical results have
also been reported for the lowest energy states [9].

In this Letter we address the question of whether the
ground state of a weakly interacting N -Boson system
with a given angular momentum is what one would nor-
mally expect, i.e., a state with a single coherent Bose
condensate, in which a mean-field approximation is valid.
We propose that this is not the case and the ground
state is generally a fragmented condensate in the pres-
ence of the weakly repulsive interatomic interaction ex-
cept L/N = 0 or 1 in the thermodynamic limit. By eval-
uating the macroscopic eigenvalues of the single-particle
(SP) density matrix, we determine the degree of conden-
sation. The origin of fragmentation turns out to be a
requirement of the conservation of angular momentum.

As a result, by turning on an (arbitrarily weak) asym-
metric perturbation of the trap, the fragmented ground
state can be easily deformed to a single condensate state
[11]. This intrinsic instability can be manifested by the
conditional probability distributions (CPDs) calculated
for the ground state, which show patterns analogous to
boson density distributions predicted by MFT. Note that
the weakly interacting N -Boson system considered here
are quite similar to the spin-1 Bose gas studied by Ho
and Yip [12], in which the fragmentation originates from
the spin conservation.

We start from the model Hamiltonian describing N
bosons in a two-dimensional harmonic trap interacting
via a weak contact interaction. The SP spectrum is usu-
ally expressed in terms of the angular momentum quan-
tum number m and the radial quantum number nr, by
Enr ,m = (2nr + |m| + 1)~ω. In the ground state of the
system all the bosons are in states with nr = 0, and
with m being zero or having the same sign as the total
angular momentum. In the second quantized form, the
Hamiltonian reads

H = H0 + V ,

H0 = ~ω
∑

j

(j + 1)â+
j âj ,

V =
1

2
g

∑

i,j,k,l

Vijkl â
+
i â

+
j âkâl, (1)

where H0 is the SP oscillator Hamiltonian and V is the
two-body interaction between bosons. In the perturba-
tive regime of weak interactions, Ng ≪ ~ω. The opera-
tor âj and â+

j annihilate and create one boson in the SP

oscillator state |j〉 with energy (j+1)~ω and angular mo-
mentum j~, respectively, and obey the bosonic commuta-
tion rules. The contact interaction elements are given by
Vijkl = δi+j,k+l2

−(i+j)(i + j)!/(i!j!k!l!)1/2 [9], and most
of them are actually vanishing. For a given total angu-
lar momentum L and number of bosons N , we consider
the Fock space spanned by states |α〉 = |n0, n1, ..., nk〉
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with
∑
j

nj = N and
∑
j

jnj = L. Here nj denotes the

occupation of the jth SP oscillator state |j〉 . There is a
huge degeneracy corresponding to many different ways
of distributing L quanta of angular momentum among
N atoms. Here we restrict ourselves in a truncated Fock
space of 0 6 j 6 jmax = 6 [8,13]. To obtain the en-
ergy spectra and the corresponding eigenstates, we set
up the matrix elements in the Fock space basis, and sub-
sequently diagonalize the matrix by using the Davidson
algorithm [14].

A fragmented ground state.—First consider the SP
density matrix in the form of

ρ(r, r′) =
∑

ij
ψ∗

i (r)ρijψj(r
′) (2)

with ψm(r) = 〈r | m〉. In Ref. [15], Yang showed that the
appearance of condensation is associated with the single
macroscopic eigenvalue (i.e. of order N) of the density
matrix ρ(r, r′) with the ”condensate wave function” be-
ing the associated eigenvector, while the case of more
than one macroscopic eigenvalue has been referred to as
a ”fragmented” condensate [10]. The most important
difference between the single and fragmented condensate
is the lack of phase coherence of the latter. To find the
eigenvalues of the SP density matrix, we write [15]

ρij = Sp âiρâ
+
j , (3)

where the trace runs over all the N − 1 boson states,
and the density matrix ρ = |ΨGS〉 〈ΨGS |. It is readily
seen that the eigenvalues are nothing but the occupation
numbers of the SP oscillator state due to the conservation
of the total angular momentum, namely ρij = δijnj . It is
difficult to give a explicit expression for the occupation
numbers nj . In the case of L = N , Wilkin et al. find
that in the limit of N → ∞, to the order O(1/N) [3],

n0 = 1, n1 = N − 2, and n2 = 1. (4)

They therefore conclude that the N -Boson system is fully
condensed into the one-vortex state in the thermody-
namic limit. More detailed information can be obtained
from the exact diagonalization calculations [5]. In figure
1, we show the L dependence of the occupation numbers
nj and their fluctuations ∆nj = (< n̂2

j > − < n̂j >
2)1/2

for j = 0, 1, 2, 3, 4 for a system of N = 40 bosons. When
L 6 N the occupation numbers evolve rather smoothly
as the angular momentum increases [5], while for L > N
there are many kinks in the curves, reflecting the com-
plexity of the ground states. The most prominent feature
in the figure is that for a high angular momentum there
are generally at least two significant occupation num-
bers. For instance, at L = 70, the system has two large
occupation numbers: nj ≈ 9 and 23 for j = 0 and 2, re-
spectively. Evidently the case gives a ”fragmented” con-
densate. Although the present calculation is performed
in the case of N = 40, the conclusion that a fragmented
condensate ground state exists universally applies to the

trapped, weakly interacting and rotating N -Boson sys-
tems with an arbitrary N including the thermodynamic
limit N → ∞ [7].

To examine the validity of the above statement, we in-
vestigate theN -dependence of the number of significantly
occupied SP states by computing the inverse participa-
tion ratio [16,5]:

IC =
∑

j
(nj/N)2. (5)

The IC is the first nontrivial moment of the distribu-
tion of occupation numbers among the different SP states
(note that

∑
j nj/N = 1 by normalization). Its inverse

1/IC qualitatively measures the number of significantly
occupied SP states. For example, IC would be unity for
a system that only had a single macroscopic occupied
states; the maximum value of N is reached in the op-
posite extreme, when all the SP oscillator states of the
system are equally occupied. Figure 2 shows a plot of
1/IC as a function of angular momentum L for a sys-
tem of N = 30, 40, 50 and 60 bosons. It is easy to see
that in the regime of L/N < 1.6 the value of 1/IC varies
smoothly as L/N increases and shows little dependence
on N . In particular, the variation of the peak height at
L/N ≈ 1.6 is less than 3% as N increases from 30 to 60
(not shown in the figure). For L/N > 1.6, some irregu-
lar small oscillations appear in the curves. However, the
overall profile of 1/IC is still nearly independent of N .
These small oscillations are purely due to the finite N ef-
fect [17] and decay gradually with increasingN . One may
expect them to vanish in the limit of N → ∞. There-
fore, we conclude that 1/IC can be further used to quali-

tatively measure the number of macroscopically occupied
SP states in the thermodynamic limit, or in other words,
to determine whether the ground state is fragmented or
not.

As shown in figure 2, there are two global minima (≈ 1)
at L/N = 0 and L/N = 1, which can be well inter-
preted as a signature of single condensates. For other val-
ues of L/N (especially in the high angular momentum),
however, 1/IC is generally larger than 2. This clearly
indicates the fragmented nature of the corresponding
ground states. Another notable feature in figure 2 is
that the overall profile of 1/IC exhibits a valley around
L/N = 1.0, 1.8, and 2.4. This is consistent with the broad
peaks of nj at L ≈ 40, 70 and 90 for j = 1, 2 and 3, re-
spectively, as shown in figure 1. The number fluctuations

∆nj are in the order of O(n
1/2
j ) for these peaks, exhibit-

ing a local characteristic of a single coherent condensate.
The intrinsic spontaneous symmetry breaking of a frag-

mented state.—Let us now consider the stability of such
a fragmented ground state. In Ref. [11,12], the authors
argued that the fragmented state is inherently unstable
to the formation of a single condensate of well-defined
phase. The essential idea is that even a weak perturba-
tion that breaks the conservation laws will rapidly gen-
erate phase coherence, modifying the density matrix de-
terministically to give a unique macroscopically occupied
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SP state. To support this point, we first show that the
fragmented state and its corresponding single condensate
state have the same energies in the limit of N → ∞, up
to the order of O(gN). A similar conclusion has been re-
ported by Jackson et al. for the special case of L = 2N
[8]. In figure 3, the interaction energy Vint in units of gN2

is plotted as a function of L/N for a system ofN = 20, 40,
and 60 bosons. As N increases, Vint becomes closer in

value to that of a single condensate V mf
int , as predicted

by the MFT [7]. The inset shows the energy difference

∆Vint = V mf
int −Vint in units of gN . It is readily seen that

all the ∆Vint with different N are approximately located
on a universal curve. This strongly suggests that ∆Vint

can be described by an approximate form

∆Vint = αgN ≪ ~ω, (6)

where in the thermodynamic limit the factor α ∼ 1 de-
pends on L/N only and the inequality comes from our
assumption of weak interaction. As a result, even a per-
turbation of order O(1/N) can be enough to drive the
fragmented state into a single condensate state. This fact
clearly indicates that the fragmented state will sponta-
neously break whatever the fragmentation was permitted
by cylindrical symmetry in the first place.

This result can be understood in another way by con-
sidering the conditional probability distributions (CPDs)
[18] that give the density correlation among bosons. We
define the CPD for finding one boson at r given another
at v0 as

P(r | v0) =
〈ΨGS |

∑
i6=j δ(r − ri)δ(v0 − rj) |ΨGS〉

(N − 1) 〈ΨGS |
∑

j δ(v0 − rj) |ΨGS〉
. (7)

Unlike the usual density distribution that is cylindrically
symmetric under rotational invariant confinement, the
CPD is asymmetric and reflects an intrinsic density dis-
tribution [19].

What will an inherently unstable fragmented state
evolve into if a weak perturbation is switched on? One
may expect that the system will rapidly change into a
state having the same intrinsic density distribution as the
fragmented state, and simultaneously generate phase co-
herence [12]. In view of this, the CPD gives the tendency
of a system’s evolution and can be regarded as a measure-
ment of the possible spontaneous symmetry breaking.

In figure 4, we show the L dependence of the CPDs
for a system of N = 40 bosons. As expected, we ob-
serve the successive vortex-like patterns of differing sym-
metries, which are in good qualitative agreement with
the mean-field calculations [7]. Both of them show a
gradual transition for the formation of one- (fig.4a) and
two-vortex-like (fig.4b) states in contrast to the rapid ap-
pearance of the three-vortex-like state (fig. 4c) [7]. As
mentioned above, we identify this similarity as a signal
of spontaneous symmetry breaking of fragmented states.

On the other hand, one should not confuse CPDs with
the “true” vortex patterns predicted by the MFT [7]. The

latter has phase coherence, which is not just well-defined
in CPDs. Besides this, they have a different physical
mechanism for the vortex emergence with the increasing
L. For example, our results seem to show that the one-
and two-vortex are produced at the center of the cloud of
condensate, in apparent contradiction to the prediction
of the MFT that the vortex enters the cloud from the
low-density periphery. These differences may be resolved
through the Josephson tunneling experiment suggested
by Leggett and Sols [20]. Certainly, more accurate theo-
retical studies on the fragmented state are required.

In conclusion, we have studied the ground state of a
weakly interacting N -Boson system with a given angular
momentum. We propose that the ground state is gener-
ally a fragmented condensate state, which is rather frag-
ile in response to a weak asymmetric perturbation. By
calculating the corresponding CPDs, we manifest this in-
trinsic instability. A comparison with the mean-field re-
sults is also given.
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Figures Captions

Fig. 1. (color) Values of nj (in blue) and ∆nj (in red)
of five lowest SP oscillator states as a function of L for
a system of N = 40 bosons with jmax = 6. The cases of
j = 5 and 6 are not shown due to their low occupancy.

Fig. 2. 1/IC versus L/N for a system ofN = 30, 40, 50,
and 60 bosons. Small oscillations at L/N > 1.6 are
caused by the finite N effect. The overall profile of 1/IC
is nearly independent of N , thus 1/IC can be used to
qualitatively measure the number of macroscopic occu-
pation numbers in the limit of N → ∞.

Fig. 3. (color) Vint in units of gN2 as a function of
L/N for a system of N = 20 (in green), 40 (in blue), and
60 (in red) bosons. For comparison, the Vint predicted
by MFT is also depicted by the dark solid line. The in-

set shows the energy difference ∆Vint = V mf
int − Vint in

units of gN. Note that all the ∆Vint with different N are
approximately located on a universal curve.

Fig. 4. Selected CPDs for a system of N = 40 bosons.
(a), (b), (c) and (d) correspond to the emergence of
vortex-like patterns with p-fold symmetry (p = 1, 2, 3, 4).
In each panel, L increases in steps of one unit, and the
starting value of L in (a), (b), (c), and (d) is 33, 62, 79,
and 108, respectively. The values of x and y in each sub-
plot range from −3.0 to +3.0. The given point v0 is (0,
1.0). For large N , the CPD is nearly independent of v0.
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